Now Loading...

Now Loading...

バギング

バギング

バギングとはブートストラップサンプリングを使って、複数の識別器を学習し、それらの多数決をとる手法です。

ランダムフォレストは決定木を用い、通常のバギングに加えて、各識別器で使用する特徴量がランダムに選択される手法です。

👉より体系的に学びたい方は「人工知能基礎」(東京大学松尾豊先生監修)へ

クイズ

以下の文章を読み、空欄(ア)に最もよく当てはまる選択肢を1つ選べ。 機械学習では、精度の高いモデルを作る工夫として、個々に学習させた複数のモデルを融合させる手法が用いられている。例えば決定木を用いるとき、ランダムフォレストは(ア)である。これはブートストラップを用いて作ったデータセットを用いて複数の学習器を並列に学習する。
  • 正解を見る
  • 解説を見る
    バギングとはブートストラップサンプリングを使って、複数の識別器を学習し、それらの多数決をとる手法です。ランダムフォレストは決定木を用い、通常のバギングに加えて、各識別器で使用する特徴量がランダムに選択される手法です。 (参考: G検定公式テキスト 第2版 第4章 4-1 P125-126) (参考:G検定公式テキスト 第1版 P99-100)

    👉G検定の受験対策は約1,000問収録の「G検定実践トレーニング」へ

人工知能基礎講座を提供中

人工知能の第一人者である東京大学の松尾豊教授が監修した人工知能基礎講座を受講してみませんか? 人工知能の歴史から自然言語処理、機械学習、深層学習といった最先端のトピックやAIに関わる法律問題まで網羅しているので全てのビジネスパーソン・AIの初学者におすすめです。

サンプル動画

人工知能基礎講座はこちら↓ zero to one G検定 人工知能基礎 jdla

AI初学者・ビジネスパーソン向けのG検定対策講座

G検定受験前にトレーニングしたい方向けの問題集「G検定実践トレーニング」も提供中です。 zero to one E資格 jdla

zero to oneの「E資格」向け認定プログラム

日本ディープラーニング協会の実施するE資格の受験ならzero to oneの「E資格」向け認定プログラム (税込165,000円) をおすすめします。当講座は、東京大学大学院工学系研究科の松尾豊教授と東北大学大学院情報科学研究科の岡谷貴之教授が監修する実践的なプログラムとなっています。 厚生労働省の教育訓練給付制度対象のE資格認定プログラムの中では最安値※となり、実質負担額49,500円~(支給割合70%の場合)で受講可能です。※2023年弊社調べ zero to one E資格 jdla