決定木
決定木
決定木とはどの特徴量がどんな値になっているか順々に考えていき、それに基づいて分岐路を作れば最終的に1つのパターンを予測できる、という考えに基づいています。
大元である根ノードから、条件分岐を経て先端の葉ノードへたどり着くと、数値やクラスなどの値が出力されます。それぞれの分岐は一つの特徴量に関するif文で表されるため、得られたモデルが解釈しやすいのがポイントです。
👉より体系的に学びたい方は「人工知能基礎」(東京大学松尾豊先生監修)へ
クイズ
決定木について述べた以下の文章において、空欄(ア)に最もよく当てはまる選択肢を1つ選べ。
決定木は与えられたデータに対して(ア)を繰り返すことで枝分かれする木のようなモデルを作成するアルゴリズムである.
人工知能基礎講座を提供中
人工知能の第一人者である東京大学の松尾豊教授が監修した人工知能基礎講座を受講してみませんか?
人工知能の歴史から自然言語処理、機械学習、深層学習といった最先端のトピックやAIに関わる法律問題まで網羅しているので全てのビジネスパーソン・AIの初学者におすすめです。
サンプル動画
AI初学者・ビジネスパーソン向けのG検定対策講座
zero to oneの「E資格」向け認定プログラム
日本ディープラーニング協会の実施するE資格の受験ならzero to oneの「E資格」向け認定プログラム (税込165,000円) をおすすめします。当講座は、東京大学大学院工学系研究科の松尾豊教授と東北大学大学院情報科学研究科の岡谷貴之教授が監修する実践的なプログラムとなっています。
厚生労働省の教育訓練給付制度対象のE資格認定プログラムの中では最安値※となり、実質負担額49,500円~(支給割合70%の場合)で受講可能です。※2023年弊社調べ