推論の効率化
推論の効率化は、生成AIや機械学習モデルが新しいデータに対して予測や判断を行う過程をより迅速かつ効率的に行うことを指します。
効率化にはいくつかの方法があり、例えば
- モデル複雑性の削減
:学習時にドロップアウトなどで複雑なモデルを簡略化する
- 計算効率の向上
:推論を行うための計算プロセスを最適化する
- 分散処理の利用
:複数のデバイスやサーバーを利用して推論を分散処理
などです。これらの手法やアプローチによって、生成AIがリアルタイムでかつ効率的に予測や生成を行えるようになります。
👉より体系的に学びたい方は「人工知能基礎」(東京大学松尾豊先生監修)へ
生成AIの推論過程を効率化する手法として、適切な選択肢を全て選べ。
人工知能基礎講座を提供中
人工知能の第一人者である東京大学の松尾豊教授が監修した人工知能基礎講座を受講してみませんか?
人工知能の歴史から自然言語処理、機械学習、深層学習といった最先端のトピックやAIに関わる法律問題まで網羅しているので全てのビジネスパーソン・AIの初学者におすすめです。
サンプル動画
AI初学者・ビジネスパーソン向けのG検定対策講座
zero to oneの「E資格」向け認定プログラム
日本ディープラーニング協会の実施するE資格の受験ならzero to oneの「E資格」向け認定プログラム (税込165,000円) をおすすめします。当講座は、東京大学大学院工学系研究科の松尾豊教授と東北大学大学院情報科学研究科の岡谷貴之教授が監修する実践的なプログラムとなっています。
厚生労働省の教育訓練給付制度対象のE資格認定プログラムの中では最安値※となり、実質負担額49,500円~(支給割合70%の場合)で受講可能です。※2023年弊社調べ