勾配消失問題
勾配消失問題
勾配消失問題とは、誤差逆伝播法の際に層が深いニューラルネットワークにおいて勾配がほぼ0になってしまい、学習が上手くいかなくなる問題です。
誤差逆伝播法では出力から入力に向かって勾配を乗算していきますが、この際勾配の値が小さくなるような活性化関数を用いていると勾配消失問題が発生しやすいことが知られています。シグモイド関数のような勾配の最大値が0.25といった小さな値を持つ活性化関数が代表例です。
👉より体系的に学びたい方は「人工知能基礎」(東京大学松尾豊先生監修)へ
クイズ
以下の文章を読み,空欄(ア)に最もよく当てはまる選択肢を1つ選べ.
誤差逆伝搬法では,活性化関数としてシグモイド関数のような微分値の最大値が小さい関数を使うと勾配消失が起こりやすく,学習がうまく進まない場合がある.現在活性化関数としてよく使われている(ア)は入力値が0以上では常に微分値が1であり,学習精度の向上と深層化に貢献した.
人工知能基礎講座を提供中
人工知能の第一人者である東京大学の松尾豊教授が監修した人工知能基礎講座を受講してみませんか?
人工知能の歴史から自然言語処理、機械学習、深層学習といった最先端のトピックやAIに関わる法律問題まで網羅しているので全てのビジネスパーソン・AIの初学者におすすめです。
サンプル動画
AI初学者・ビジネスパーソン向けのG検定対策講座
zero to oneの「E資格」向け認定プログラム
日本ディープラーニング協会の実施するE資格の受験ならzero to oneの「E資格」向け認定プログラム (税込165,000円) をおすすめします。当講座は、東京大学大学院工学系研究科の松尾豊教授と東北大学大学院情報科学研究科の岡谷貴之教授が監修する実践的なプログラムとなっています。
厚生労働省の教育訓練給付制度対象のE資格認定プログラムの中では最安値※となり、実質負担額49,500円~(支給割合70%の場合)で受講可能です。※2023年弊社調べ