Now Loading...

Now Loading...

次元削減

次元削減

次元削減とは、多次元のデータをなるべく情報を失わないように低次元のデータに落とし込むことです。

データの量を節約できるので計算を高速化でき、またデータが解釈しやすくなるというメリットがあります。

クイズ

次元削減を用いることで、データセットの次元数を減らすことが出来る。これは,複数の観測変数をそれぞれに適切な重み付けをした上で融合し、ひとつの潜在変数にまとめるという手法である。この手法を用いる際に気を付けるべき事項として、最も適切な選択肢を1つ選べ。
  • 正解を見る
  • 解説を見る
    例えば,観測したデータとして「身長」と「食事量」があるとき,潜在変数として「体重」を導入し,変数をまとめることができるかもしれません.データの数を減らすため計算が高速化しますが,学習に用いることのできる情報量が減るので場合によっては精度は下がることもあります.

人工知能基礎講座を提供中

人工知能の第一人者である東京大学の松尾豊教授が監修した人工知能基礎講座を受講してみませんか? 人工知能の歴史から自然言語処理、機械学習、深層学習といった最先端のトピックやAIに関わる法律問題まで網羅しているので全てのビジネスパーソン・AIの初学者におすすめです。

サンプル動画

人工知能基礎講座はこちら↓ zero to one G検定 人工知能基礎 jdla

AIエンジニアを目指すならE資格

日本ディープラーニング協会の実施するE資格の受験に必要となるE資格認定プログラムを割引価格で提供中です。最短合格を目指す方向けのスピードパッケージを70,000円で提供中。(一発合格で33,000円のキャッシュバックキャンペーンも実施中です) zero to one E資格 jdla

AI初学者・ビジネスパーソン向けのG検定対策講座

G検定受験前にトレーニングしたい方向けの問題集「G検定実践トレーニング」も提供中です。 zero to one E資格 jdla

関連ワード

機械学習の具体的手法

教師あり学習

教師なし学習

強化学習

モデルの評価