Now Loading...

Now Loading...

隠れ層

隠れ層

隠れ層は入力と出力を対応づける関数に相当します。
隠れ層がない単純パーセプトロンは線形分類しか表現することが出来ませんでしたが、隠れ層という新たな関数を追加することで、非線形分類が可能となりました。

クイズ

以下の文章を読み、空欄(ア)~(イ)の組み合わせに最もよく当てはまる選択肢を1つ選べ。 ニューラルネットワークのモデルの一つとして入力層(データを入れる層)と出力層で構成される単純パーセプトロンと呼ばれるネットワークがある。これで2クラスのデータを分類するため学習したところ、予測の結果はおよそ50%とあまりいい結果を得ることができなかった。そこで、新たに隠れ層を入れた多層パーセプトロンで学習をしてみたところ、今度は90%を超える予測の結果を得ることができた。これは、隠れ層の(ア)によって(イ)ができるようになったためである。
  • 正解を見る
  • 解説を見る
    単純パーセプトロンは入力層と出力層からなるシンプルなニューラルネットワークで、線形分類しか行うことができません。多層パーセプトロンは隠れ層を追加することで、非線形分類を行えるようになるモデルで、非線形変換を担う関数を活性化関数といいます。一方隠れ層を単純に追加していくと、誤差逆伝播がうまくいかず、勾配消失で学習がうまくいかないことがあります。ディープラーニングでは隠れ層を増やしても誤差逆伝播を上手くいくよう、多くの工夫を積み重ねられています. (参考: G検定公式テキスト 第2版 第4章 4-1 P128-130) (参考: G検定公式テキスト 第1版 P116 - 120)

特別割引クーポンのお知らせ

zero to one G検定 jdla

zero to one G検定 jdla

関連ワード

機械学習の具体的手法