Now Loading...

Now Loading...

DQN

DQN

DQNはDeepMind社によって発表されたAIの強化学習のアルゴリズムの一種です。

最初の画像に示したように、スタートをAとし、ゴールをIとした経路を考えます。まず、環境から与えられる設計として物理的にゴールに近くなれば+1,遠くなれば-1,ゴールに到達すると+100であるとし、状態と行動に対応するQテーブルというものを用意します。Qテーブルの初期値は全て0とします。DQNではこのQテーブルを更新し続け、その値が大きい行動がより良いといったように学習を行います。Q値の更新式に則ってQテーブルを更新し続けますが、ここで出てくるγは割引率といい、行動の手数が増えれば増えるほどその行動の価値は低いという情報を加味するための値となります。

👉より体系的に学びたい方は「人工知能基礎」(東京大学松尾豊先生監修)へ

クイズ

以下の文章を読み,空欄(ア)に最もよく当てはまる選択肢を1つ選べ. 深層強化学習の1つであるDQN(Deep Q-Network)は、強化学習である(ア)においてQ値を推定するのにディープラーニングを用いたモデルである.
  • 正解を見る
  • 解説を見る
    Q学習はQ値を学習するためのアルゴリズムです。Q値は強化学習において、ある状態においてある行動がどの程度の価値を持つかを指標化したものです。 (参考: G検定公式テキスト 第2版 第6章 6-5 P253) (参考:G検定公式テキスト 第1版 P175)

    👉G検定の受験対策は約1,000問収録の「G検定実践トレーニング」へ

人工知能基礎講座を提供中

人工知能の第一人者である東京大学の松尾豊教授が監修した人工知能基礎講座を受講してみませんか? 人工知能の歴史から自然言語処理、機械学習、深層学習といった最先端のトピックやAIに関わる法律問題まで網羅しているので全てのビジネスパーソン・AIの初学者におすすめです。

サンプル動画

人工知能基礎講座はこちら↓ zero to one G検定 人工知能基礎 jdla

AI初学者・ビジネスパーソン向けのG検定対策講座

G検定受験前にトレーニングしたい方向けの問題集「G検定実践トレーニング」も提供中です。 zero to one E資格 jdla

zero to oneの「E資格」向け認定プログラム

日本ディープラーニング協会の実施するE資格の受験ならzero to oneの「E資格」向け認定プログラム (税込165,000円) をおすすめします。当講座は、東京大学大学院工学系研究科の松尾豊教授と東北大学大学院情報科学研究科の岡谷貴之教授が監修する実践的なプログラムとなっています。 厚生労働省の教育訓練給付制度対象のE資格認定プログラムの中では最安値※となり、実質負担額49,500円~(支給割合70%の場合)で受講可能です。※2023年弊社調べ zero to one E資格 jdla

関連ワード

ディープラーニングの手法

畳み込みニューラルネットワーク

深層生成モデル

画像認識分野

音声処理と自然言語処理分野

深層強化学習分野

モデルの解釈性とその対応

モデルの軽量化